
Planck 2018 results

VI. Cosmological parameters

X. Constraints on inflation

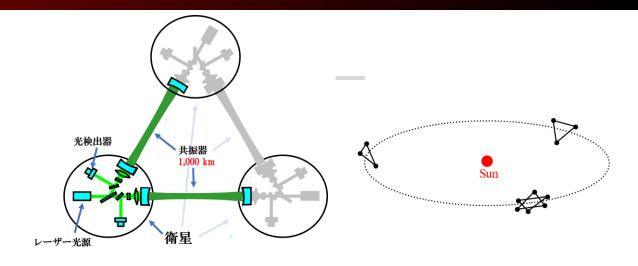
A&A 641, A6 (2020) https://doi.org/10.1051/0004-6361/201833910 A&A 641, A10 (2020) https://doi.org/10.1051/0004-6361/201833887

スペース重力波アンテナDECIGO

観測目標

- 原始重力波
 - →インフレーション理論の証明、初期宇宙の解明
- 連星合体からの重力波など

> 特徴


- 宇宙空間に3機の衛星を展開 (1cluster)
 - →地面振動雑音、懸架系の熱雑音の除去
- 光共振器を用いた干渉計

研究の背景

• 原始重力波の上限強度の引き下げ (プランク衛星等の観測)

検出器の感度向上が必要 この観測結果の論文

感度を制限している<u>量**子雑音の低減**</u>が必要

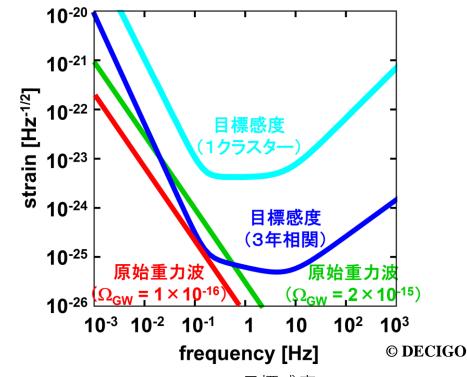
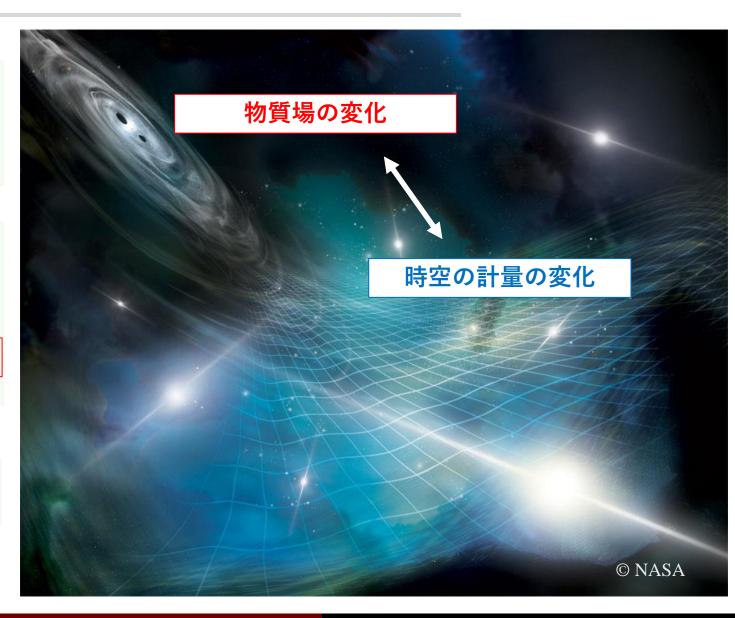


Figure: DECIGOの目標感度

重力波とは

▶ 重力波

- アインシュタインが一般相対論で予言
- 時空の歪みが波となって伝搬
- 2015年に初検出


Einstein方程式

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \frac{8\pi G}{c^4}T_{\mu\nu}$$

時空の計量 → 物質(エネルギー運動量)

✔ 物質場が変化することで計量に歪みが生じる ⇒ 重力波の発生

Kenji Tsuji (Nagoya University) March 12, 2024 3/17

重力波とは

▶ 重力波

- アインシュタインが一般相対論で予言
- 時空の歪みが波となって伝搬
- 2015年に初検出


▶ Einstein方程式

$$\left(\bar{R}_{\mu\nu} + R_{\mu\nu}^{(1)}\right) - \frac{1}{2} \left(\bar{g}_{\mu\nu} + g_{\mu\nu}^{(1)}\right) \left(\bar{R} + R^{(1)}\right) = 0$$

背景の計量 計量の揺らぎ

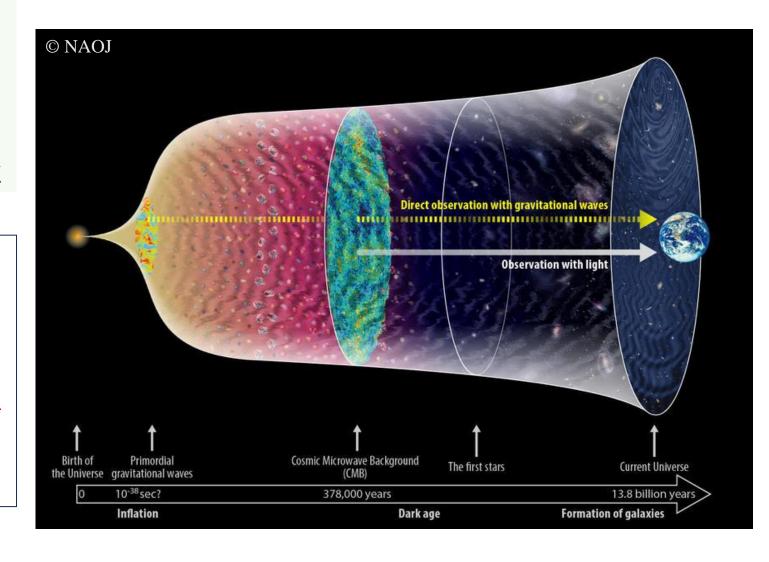
- ✔ 計量が量子的に揺らぐ
 - 重力波の発生
- 通常、観測が期待できるほど強度は大きくはない

Kenji Tsuji (Nagoya University) March 12, 2024 4/17

宇宙の進化

> インフレーション

- 宇宙誕生10⁻³⁶~10⁻³⁴秒後に起こったと されている宇宙の指数関数的膨張
- 地平線問題や平坦性問題などを解決
- 宇宙論において<u>最も妥当性のある理論</u>



Dark energy : Λ

• Cold dark matter : CDM

- ◆ 6つのパラメータで記述可能
- ◆ 初期状態はインフレーション期の<u>場の量子</u> <u>揺らぎ</u>が決める
- ◆ 時間経過とともにΛに起因する負の圧力が 支配的となり、宇宙は加速膨張する

Kenji Tsuji (Nagoya University) 5/17

インフレーション

> スカラー場

• 宇宙の指数関数的膨張を実現するためには負の圧力源、またはそれと等価な一定のエネルギー密度が必要

実現するための単純な理論が インフラトン(スカラー場)の導入

$$S = \int d^4x \sqrt{-g} \left[\frac{1}{2} R + \frac{1}{2} g^{\mu\nu} \frac{\partial \phi}{\partial \mu} \frac{\partial \phi}{\partial \nu} - V(\phi) \right] = S_{\text{EH}} + S_{\phi}$$

ポテンシャルの形は? ✓ ΛCDMモデルに接続

> Single-Field Slow-Roll Inflation

ゆっくりとポテンシャルを転がるモデル

* 条件に適したポテンシャルには多くの種類がある
→ インフレーションモデルは様々

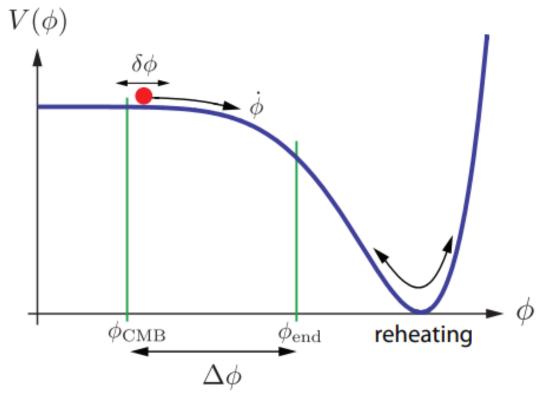


Figure: Example of an inflation potential.

Cite: Daniel Baumann, 2012, TASI Lectures on Inflation. arXiv:0907.5424

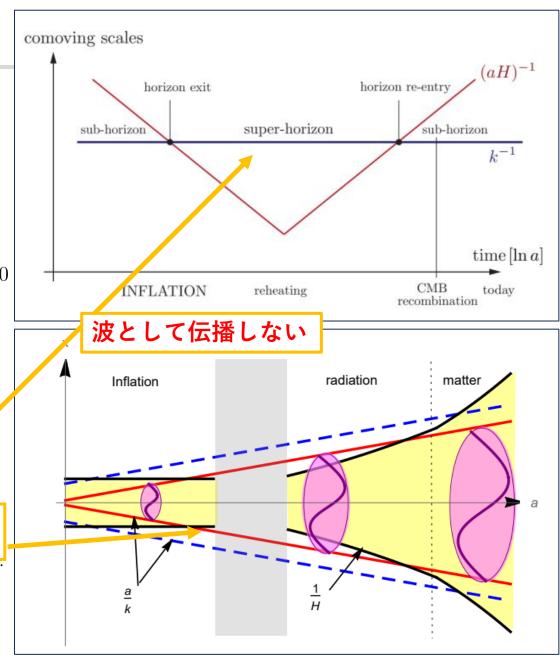
インフレーション

> 原始重力波

- インフレーション期の時空の量子揺らぎから生成
- 発展方程式

$$-\frac{1}{2}\nabla_{\alpha}\nabla^{\alpha}\bar{h}_{\mu\nu} - R^{(0)}_{\nu\beta\mu\alpha}\bar{h}^{\beta\alpha} + \frac{1}{2}\left(R^{(0)}_{\alpha\nu}\bar{h}^{\alpha}_{\mu} + R^{(0)}_{\alpha\mu}\bar{h}^{\alpha}_{\nu} - \bar{h}_{\mu\nu}R^{(0)} + g_{\mu\nu}\bar{h}^{\alpha\beta}R^{(0)}_{\alpha\beta}\right) = 0$$

▶ FLRW計量


• 宇宙の時間発展を記述可能な計量

$$ds^{2} = -c^{2}dt^{2} + a^{2}(t)dx^{i}dx^{j}$$
$$= a^{2}(\eta) \left[-d\eta^{2} + dx^{i}dx^{j} \right]$$

$$\frac{d^2h_k}{d\eta^2} + \left(k^2 - \frac{a''}{a}\right)h_k = 0$$

$$\frac{d^2h_k}{d\eta^2} + \left(k^2 - \frac{a''}{a}\right)h_k = 0 \qquad h_k \sim \begin{cases} \text{Const.} & \left(\text{for } \frac{a}{k} \gg \frac{1}{H}\right) \\ \frac{1}{\alpha}\sin\left(\frac{1}{a} + \alpha\right) & \left(\text{for } \frac{a}{k} \ll \frac{1}{H}\right) \end{cases}$$

 $*h_k$ は h_{uv} のモード展開から得られる

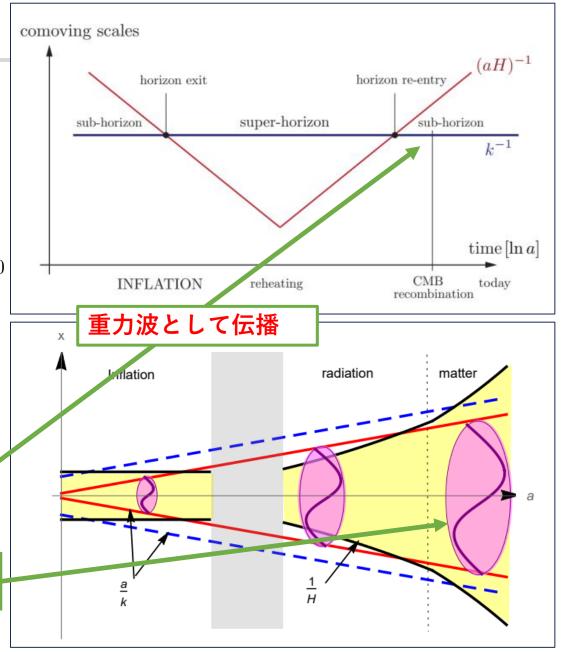
インフレーション

> 原始重力波

- インフレーション期の時空の量子揺らぎから生成
- 発展方程式

$$-\frac{1}{2}\nabla_{\alpha}\nabla^{\alpha}\bar{h}_{\mu\nu} - R^{(0)}_{\nu\beta\mu\alpha}\bar{h}^{\beta\alpha} + \frac{1}{2}\left(R^{(0)}_{\alpha\nu}\bar{h}^{\alpha}_{\mu} + R^{(0)}_{\alpha\mu}\bar{h}^{\alpha}_{\nu} - \bar{h}_{\mu\nu}R^{(0)} + g_{\mu\nu}\bar{h}^{\alpha\beta}R^{(0)}_{\alpha\beta}\right) = 0$$

▶ FLRW計量


• 宇宙の時間発展を記述可能な計量

$$ds^{2} = -c^{2}dt^{2} + a^{2}(t)dx^{i}dx^{j}$$
$$= a^{2}(\eta) \left[-d\eta^{2} + dx^{i}dx^{j} \right]$$

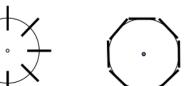
$$\frac{d^2h_k}{d\eta^2} + \left(k^2 - \frac{a''}{a}\right)h_k = 0$$

 $\frac{d^2 h_k}{d\eta^2} + \left(k^2 - \frac{a''}{a}\right) h_k = 0 \qquad h_k \sim \begin{cases} \text{Const.} & \left(\text{for } \frac{a}{k} \gg \frac{1}{H}\right) \\ \frac{1}{a} \sin\left(\frac{1}{a} + \alpha\right) & \left(\text{for } \frac{a}{k} \ll \frac{1}{H}\right) \end{cases}$

 $*h_k$ は $h_{\mu\nu}$ のモード展開から得られる

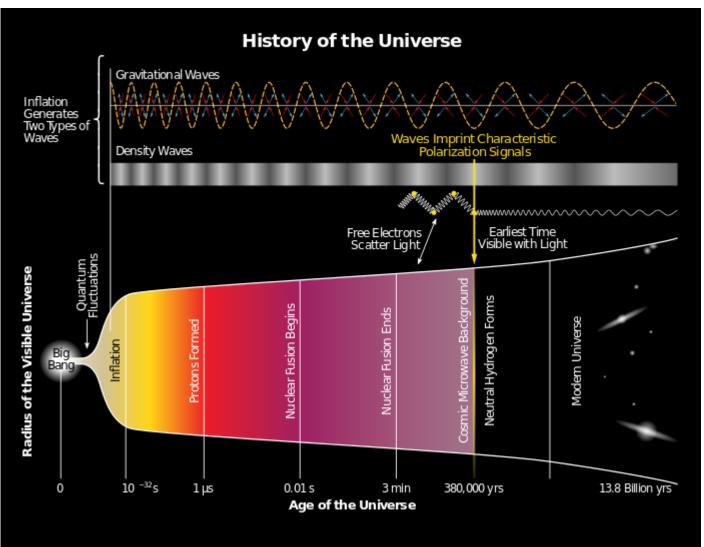
原始重力波

✓ 計量の歪みを観測すればよい


歪みは非常に小さいため、観測出来ていない **↓**DECIGOで観測を目指す

✓ 原始重力波が<u>影響を及ぼすもの</u>を観測する

- ➤ CMBのB-mode偏光
 - Thomson散乱による偏光
 - 重力波の×モードによって生じる非対称分布


トムソン散乱(Eモード)

重力波(Bモード)

Cite: https://gwdoc.icrr.u-tokyo.ac.jp/DocDB/0022/G1402249/002/GWSeminar20140307_Tomaru.pdf

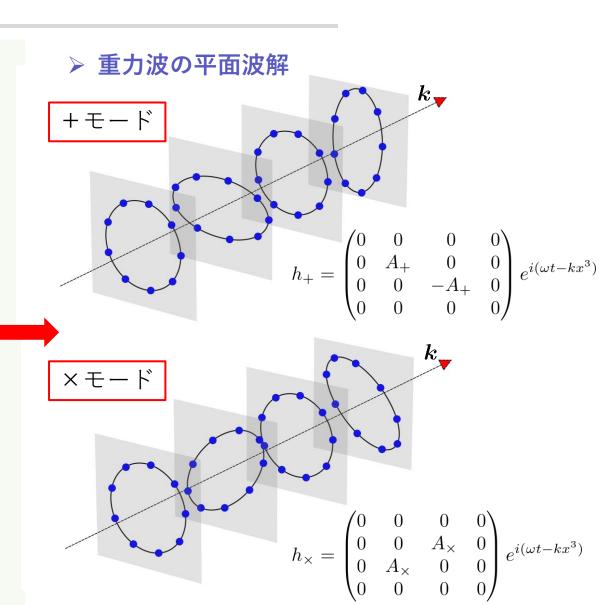
Kenji Tsuji (Nagoya University)

March 12, 2024

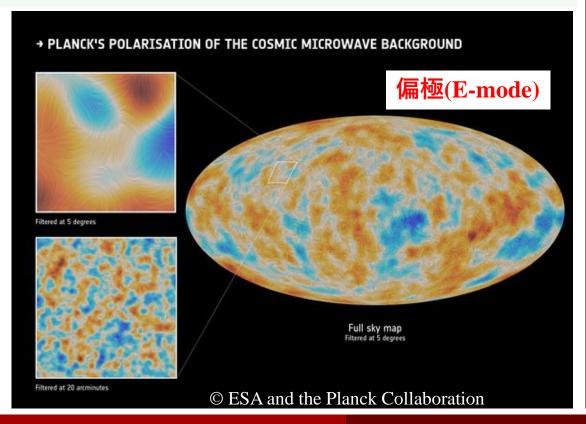
重力波の伝播

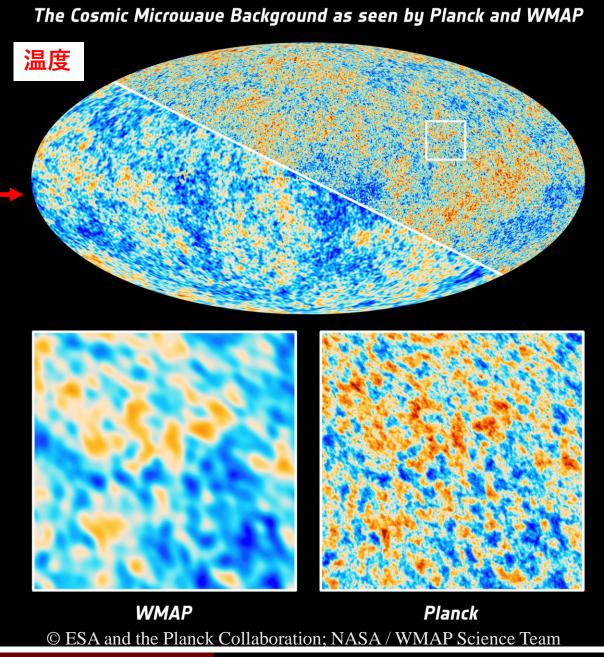
➤ Einstein方程式の線形化

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \frac{8\pi G}{c^4}T_{\mu\nu}$$

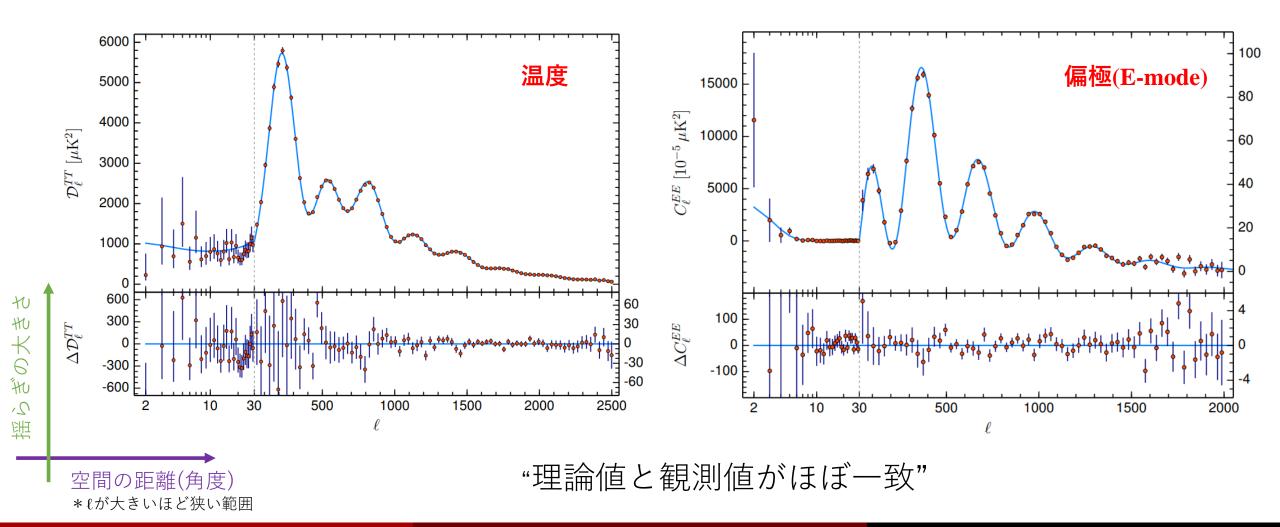

✓ Minkowski計量に摂動項を加えて線形化 $g_{\mu\nu}=\eta_{\mu\nu}+h_{\mu\nu}$

$$\Box \bar{h}_{\mu\nu} = -\frac{16\pi G}{c^4} T_{\mu\nu}$$


- ✓ 遠方では波源のエネルギー運動量を無視
- ✓ $T_{\mu\nu}=0$ と見做せる弱い重力場を想定


$$\Box \bar{h}_{\mu\nu} = 0$$

波動方程式



- > 観測対象
 - Cosmic Microwave Background (CMB)
- > 特徴
 - CMBの高精度測定(異方性測定)
 - 温度と偏光の情報が得られる

▶ 宇宙の標準モデルは正しいのか?

Kenji Tsuji (Nagoya University)

March 12, 2024

12/17

モデルとほぼ一致

• 宇宙論パラメータをMCMCによって求める

Table 2. Parameter 68% intervals for the base-ΛCDM model from *Planck* CMB power spectra, in combination with CMB lensing reconstruction and BAO.

Parameter	TT+lowE 68% limits	TE+lowE 68% limits	EE+lowE 68% limits	TT,TE,EE+lowE 68% limits	TT,TE,EE+lowE+lensing 68% limits	TT,TE,EE+lowE+lensing+BAC 68% limits
$\Omega_{\rm b}h^2$	0.02212 ± 0.00022 0.1206 ± 0.0021 1.04077 ± 0.00047 0.0522 ± 0.0080 3.040 ± 0.016 0.9626 ± 0.0057	0.02249 ± 0.00025 0.1177 ± 0.0020 1.04139 ± 0.00049 0.0496 ± 0.0085 $3.018^{+0.020}_{-0.018}$ 0.967 ± 0.011	0.0240 ± 0.0012 0.1158 ± 0.0046 1.03999 ± 0.00089 0.0527 ± 0.0090 3.052 ± 0.022 0.980 ± 0.015	0.02236 ± 0.00015 0.1202 ± 0.0014 1.04090 ± 0.00031 $0.0544^{+0.0070}_{-0.0081}$ 3.045 ± 0.016 0.9649 ± 0.0044	0.02237 ± 0.00015 0.1200 ± 0.0012 1.04092 ± 0.00031 0.0544 ± 0.0073 3.044 ± 0.014 0.9649 ± 0.0042	0.02242 ± 0.00014 0.11933 ± 0.00091 1.04101 ± 0.00029 0.0561 ± 0.0071 3.047 ± 0.014 0.9665 ± 0.0038
$H_0 [\text{km s}^{-1} \text{Mpc}^{-1}]$	66.88 ± 0.92 0.679 ± 0.013	68.44 ± 0.91 0.699 ± 0.012	69.9 ± 2.7 0.711 ^{+0.033} _{-0.026}	67.27 ± 0.60 0.6834 ± 0.0084	67.36 ± 0.54 0.6847 ± 0.0073	67.66 ± 0.42 0.6889 ± 0.0056
$\Omega_{ m m}$ $\Omega_{ m m} h^2$	0.321 ± 0.013 0.1434 ± 0.0020	0.301 ± 0.012 0.1408 ± 0.0019	$0.141_{-0.026}^{+0.026}$ $0.289_{-0.033}^{+0.026}$ $0.1404_{-0.0039}^{+0.0034}$	0.3166 ± 0.0084 0.1432 ± 0.0013	0.3153 ± 0.0073 0.1430 ± 0.0011	0.3111 ± 0.0056 0.14240 ± 0.00087
$\Omega_{\mathrm{m}}h^3$	0.09589 ± 0.00046	0.09635 ± 0.00051	0.0981+0.0016	0.09633 ± 0.00029	0.09633 ± 0.00030	0.09635 ± 0.00030
•	•	•	•	•	•	· ·

• モデルとほぼ一致

• 宇宙論パラメータをMCMCによって求める

- B-mode偏光を特徴づける2つのパラメータを決定
 - Tensor-to-scalar ratio: r
 - Spectral tilt: n_t

$$\Omega_{\text{gw}}(f) = \Omega_{\text{gw}}^{\text{CMB}} \left(\frac{f}{f_{\text{CMB}}} \right)^{n_t} \left[\frac{1}{2} \left(\frac{f_{\text{eq}}}{f} \right)^2 + \frac{16}{9} \right]$$

$$\Omega_{\text{gw}}^{\text{CMB}} = \frac{3}{128} r A_s \Omega_r$$

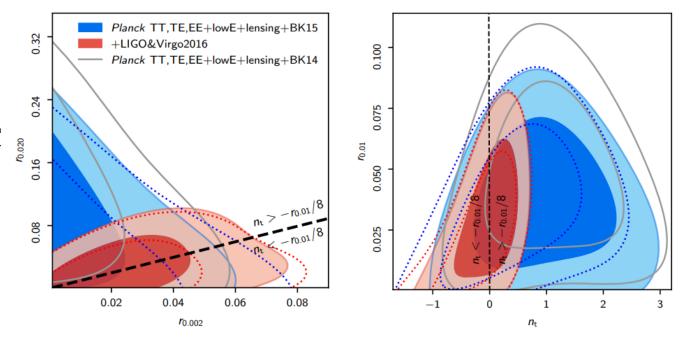
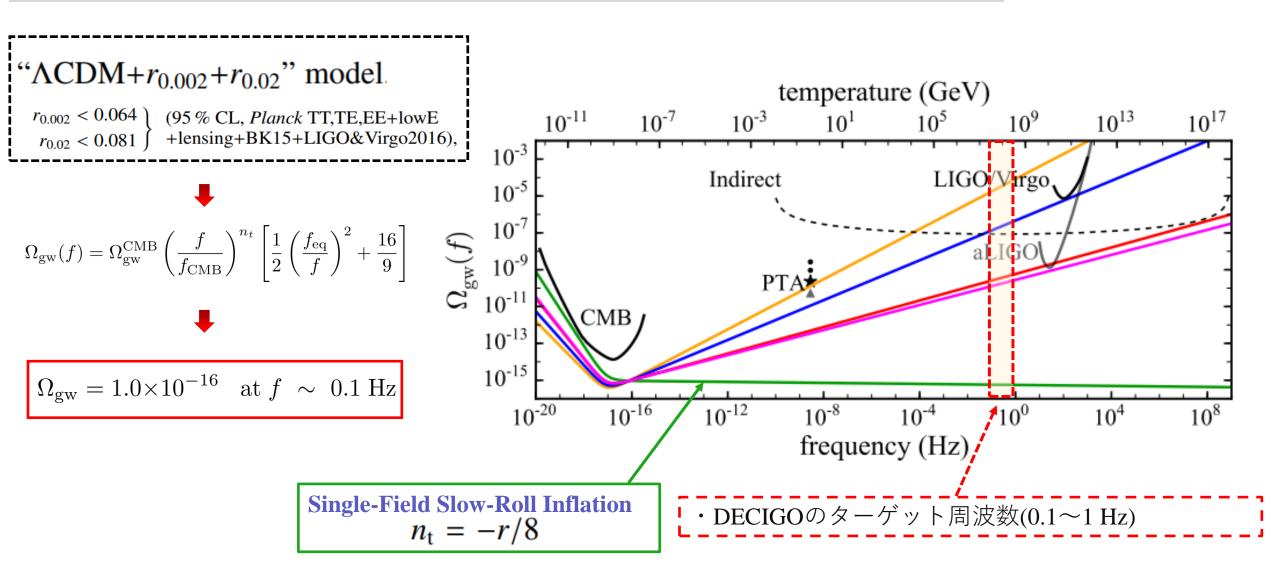
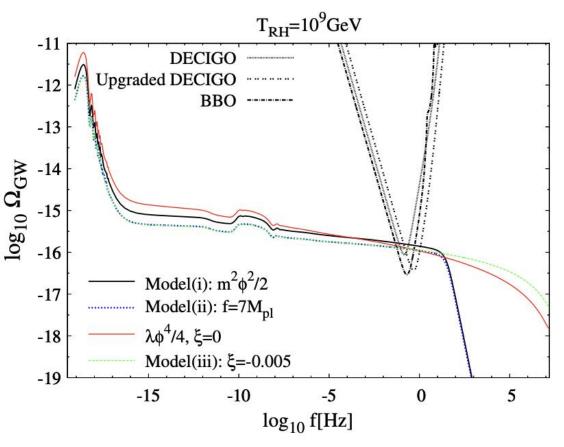
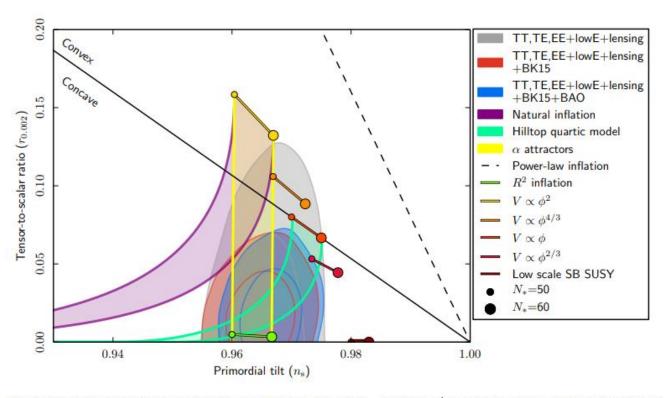



Fig. 5. 68 % and 95 % CL constraints on tensor perturbations in the Λ CDM+ $r_{0.002}+r_{0.02}$ model, i.e., when the inflationary consistency relation is relaxed. Filled contours in the left panel show the results for our independent primary parameters $r_{0.002}$ and $r_{0.02}$, which have uniform priors, and in the right panel for the derived parameters n_t and $r_{0.01}$, which have non-uniform priors. The dotted lines assume uniform priors on $r_{0.01}$ and n_t , calculated as in Fig. 4. The scale k = 0.01 Mpc⁻¹ is near the decorrelation scale of (n_t, r) for the *Planck*+BK15 data. In both panels the dashed black line indicates the inflationary consistency condition, $n_t = -r_{0.01}/8$. (The grey contours follow if we use the older BK14 data instead of the BK15 data.)

Kenji Tsuji (Nagoya University)
March 12, 2024
14/17


Cite: Paul D. Lasky et al, Gravitational-wave cosmology across 29 decades in frequency. arXiv:1511.05994

Kenji Tsuji (Nagoya University)


March 12, 2024

15/17

▶ インフレーションモデルへの制限

Cite: S. Kuroyanagi et al, 2014, PRD 90, 063513

Fig. 8. Marginalized joint 68 % and 95 % CL regions for n_s and r at $k = 0.002 \,\mathrm{Mpc^{-1}}$ from *Planck* alone and in combination with BK15 or BK15+BAO data, compared to the theoretical predictions of selected inflationary models. Note that the marginalized joint 68 % and 95 % CL regions assume $dn_s/d \ln k = 0$.

Kenji Tsuji (Nagoya University)

March 12, 2024

まとめ

- ▶ 初期宇宙解明のために非常に重要な観測
- ▶ 標準宇宙論モデルと無矛盾な観測結果
- ➤ Bモード偏光から原始重力波の証拠を探索

Bモード偏光自体は見つかっていないがパラメータを制限

" Λ CDM+ $r_{0.002}$ + $r_{0.02}$ " model.

 $r_{0.002} < 0.064$ (95 % CL, *Planck* TT,TE,EE+lowE +lensing+BK15+LIGO&Virgo2016),

原始重力波の上限強度の引き下げ

 $\Omega_{\rm gw} = 1.0 \times 10^{-16} \ {\rm at} \ f \sim 0.1 \ {\rm Hz}$

DECIGOで検出するためには感度の向上が必要

Kenji Tsuji (Nagoya University)